Dust Collector
What Are The Uses?
Dust collectors are used in many processes to either recover valuable granular solid or powder from process streams, or to remove granular solid pollutants from exhaust gases prior to venting to the atmosphere. Dust collection is an online process for collecting any process-generated dust from the source point on a continuous basis. Dust collectors may be of single unit construction, or a collection of devices used to separate particulate matter from the process air. They are often used as an air pollution control device to maintain or improve air quality.
Mist collectors remove particulate matter in the form of fine liquid droplets from the air. They are often used for the collection of metal working fluids, and coolant or oil mists. Mist collectors are often used to improve or maintain the quality of air in the workplace environment.
Fume and smoke collectors are used to remove sub-micrometer-size particulates from the air. They effectively reduce or eliminate particulate matter and gas streams from many industrial processes such as welding, rubber and plastic processing, high speed machining with coolants, tempering, and quenching.
What Is Dust Collector?
A dust collector is a system used to enhance the quality of air released from industrial and commercial processes by collecting dust and other impurities from air or gas. Designed to handle high-volume dust loads, a dust collector system consists of a blower, dust filter, a filter-cleaning system, and a dust receptacle or dust removal system. It is distinguished from air purifiers, which use disposable filters to remove dust.
Types Of Dust Collectors:
Three main types of industrial dust collectors are:
Inertial separators
Fabric filters
Wet scrubbers
Dust Collector
Types Of Scrubbers Explained
Inertial Separators:
Inertial separators separate dust from gas streams using a combination of forces, such as centrifugal, gravitational, and inertial. These forces move the dust to an area where the forces exerted by the gas stream are minimal. The separated dust is moved by gravity into a hopper, where it is temporarily stored.
The three primary types of inertial separators are:
Settling chambers
Baffle chambers
Centrifugal collectors
Neither settling chambers nor baffle chambers are commonly used in the minerals processing industry. However, their principles of operation are often incorporated into the design of more efficient dust collectors.
Fabric Filters:
Commonly known as baghouses, fabric collectors use filtration to separate dust particulates from dusty gases. They are one of the most efficient and cost-effective types of dust collectors available, and can achieve a collection efficiency of more than 99% for very fine particulates.[6]
Dust-laden gases enter the baghouse and pass through fabric bags that act as filters. The bags can be of woven or felted cotton, synthetic, or glass-fiber material in either a tube or envelope shape.
Wet Scrubbers:
Dust collectors that use liquid are known as wet scrubbers. In these systems, the scrubbing liquid (usually water) comes into contact with a gas stream containing dust particles. Greater contact of the gas and liquid streams yields higher dust removal efficiency.
There is a large variety of wet scrubbers; however, all have one of three basic configurations:
1. Gas-humidification - The gas-humidification process agglomerates fine particles, increasing the bulk, making collection easier.
2. Gas-liquid contact - This is one of the most important factors affecting collection efficiency. The particle and droplet come into contact by four primary mechanisms:
a) Inertial impaction - When water droplets placed in the path of a dust-laden gas stream, the stream separates and flows around them. Due to inertia, the larger dust particles will continue on in a straight path, hit the droplets, and become encapsulated.
b) Interception - Finer particles moving within a gas stream do not hit droplets directly but brush against and adhere to them.
c) Diffusion - When liquid droplets are scattered among dust particles, the particles are deposited on the droplet surfaces by Brownian movement, or diffusion. This is the principal mechanism in the collection of submicrometre dust particles.
d) Condensation nucleation - If a gas passing through a scrubber is cooled below the dewpoint, condensation of moisture occurs on the dust particles. This increase in particle size makes collection easier.
3. Gas-liquid separation - Regardless of the contact mechanism used, as much liquid and dust as possible must be removed. Once contact is made, dust particulates and water droplets combine to form agglomerates. As the agglomerates grow larger, they settle into a collector.